Bayesian sparse reduced rank multivariate regression
نویسندگان
چکیده
Many modern statistical problems can be cast in the framework of multivariate regression, where the main task is to make statistical inference for a possibly sparse and low-rank coefficient matrix. The low-rank structure in the coefficient matrix is of intrinsic multivariate nature, which, when combined with sparsity, can further lift dimension reduction, conduct variable selection, and facilitate model interpretation. Using a Bayesian approach, we develop a unified sparse and low-rank multivariate regression method to both estimate the coefficient matrix and obtain its credible region for making inference. The newly developed sparse and low-rank prior for the coefficient matrix enables rank reduction, predictor selection and response selection simultaneously. We utilize the marginal likelihood to determine the regularization hyperparameter, so our method maximizes its posterior probability given the data. For theoretical aspect, the posterior consistency is established to discuss an asymptotic behavior of the proposed method. The efficacy of the proposed approach is demonstrated via simulation studies and a real application on yeast cell cycle data.
منابع مشابه
Eco 2009/31 Department of Economics Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models
The paper addresses the issue of forecasting a large set of variables using multivariate models. In particular, we propose three alternative reduced rank forecasting models and compare their predictive performance for US time series with the most promising existing alternatives, namely, factor models, large scale Bayesian VARs, and multivariate boosting. Speci cally, we focus on classical reduc...
متن کاملSparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection in Multivariate Regression
The reduced-rank regression is an effective method to predict multiple response variables from the same set of predictor variables, because it can reduce the number of model parameters as well as take advantage of interrelations between the response variables and therefore improve predictive accuracy. We propose to add a new feature to the reduced-rank regression that allows selection of releva...
متن کاملConditional posteriors for the reduced rank regression model
The multivariate reduced rank regression model plays an important role in econometrics. Examples include co-integration analysis and models with a factor structure. Geweke (1996) provided the foundations for a Bayesian analysis of this model. Unfortunately several of the full conditional posterior distributions, which forms the basis for constructing a Gibbs sampler for the poster distribution,...
متن کاملConditional Sparse Coding and Grouped Multivariate Regression
We study the problem of multivariate regression where the data are naturally grouped, and a regression matrix is to be estimated for each group. We propose an approach in which a dictionary of low rank parameter matrices is estimated across groups, and a sparse linear combination of the dictionary elements is estimated to form a model within each group. We refer to the method as conditional spa...
متن کاملSparse Bayesian Multi-Task Learning
We propose a new sparse Bayesian model for multi-task regression and classification. The model is able to capture correlations between tasks, or more specifically a low-rank approximation of the covariance matrix, while being sparse in the features. We introduce a general family of group sparsity inducing priors based on matrix-variate Gaussian scale mixtures. We show the amount of sparsity can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of multivariate analysis
دوره 157 شماره
صفحات -
تاریخ انتشار 2017